Строение бактериальной клетки

  • Пожаловаться



С точки зрения современной науки прокариоты имеют примитивное строение. Но именно эта «незатейливость» помогает выживать им в самых неожиданных условиях. Например, в сероводородных источниках или на атомных полигонах. Ученые подсчитали, что общая масса всех земных микроорганизмов составляет 550 миллиардов тонн.

Бактерии имеют одноклеточное строение. Но это не значит, что бактериальные клетки пасуют перед клетками животных или растений. Микробиология уже располагает знаниями о сотнях тысяч видов микроорганизмов. Тем не менее, представители науки ежедневно открывают новые их виды и особенности.

Немудрено, что для полного освоения поверхности Земли микроорганизмам приходится принимать разнообразные формы:

  • кокки – шарики;
  • стрептококки – цепочки;
  • бациллы – палочки;
  • вибрионы – изогнутые запятые;
  • спириллы – спиральки.

Размер бактерий измеряют в нанометрах и микрометрах. Их средняя величина составляет 0,8 мкм. Но среди них имеются прокариоты-гиганты, достигающие 125 мкм и больше. Настоящими великанами среди лилипутов являются спирохеты длиной в 250 мкм. Сравните теперь с ними размер самой мелкой прокариотической клеточки: микоплазмы «вырастают» совсем чуть-чуть и достигают 0,1-0,15 мкм в диаметре.

Стоит сказать, что великанам-бактериям не так легко выжить в окружающей среде. Им сложно найти себе достаточно питательных веществ для успешного выполнения своей функции. Но зато они не являются легкой добычей для бактерий-хищников, которые питаются своими собратьями – одноклеточными микроорганизмами, «обтекая» и поедая их.

Внешнее строение бактерий

Клеточная стенка

  • Клеточная стенка бактериальной клетки является для нее защитой и опорой. Она придает микроорганизму свою, специфическую форму.
  • Клеточная стенка проницаема. Через нее проходят питательные вещества внутрь и продукты обмена (метаболизма) наружу.
  • Некоторые виды бактерий вырабатывают специальную слизь, которая напоминает капсулу, предохраняющую их от высыхания.
  • У некоторых клеток имеются жгутики (один или несколько) или ворсинки, которые помогают им передвигаться.
  • У бактериальных клеток, которые при окрашивании по Граму приобретают розовую окраску (грамотрицательные), клеточная стенка более тонкая, многослойная. Ферменты, благодаря которым происходит расщепление питательных веществ, выделяются наружу.
  • У бактерий, которые при окрашивании по Граму приобретают фиолетовую окраску (грамположительные), клеточная стенка толстая. Питательные вещества, которые поступают в клетку, расщепляются в периплазматическом пространстве (пространство между клеточной стенкой и мембраной цитоплазмы) гидролитическими ферментами.
  • На поверхности клеточной стенки имеются многочисленные рецепторы. К ним прикрепляются убийцы клеток – фаги, колицины и химические соединения.
  • Липопротеиды стенки у некоторых видов бактерий являются антигенами, которые называются токсинами.
  • При длительном лечении антибиотиками и по ряду других причин некоторые клетки теряют оболочку, но сохраняют способность к размножению. Они приобретают округлую форму – L-форму и могут длительно сохраняться в организме человека (кокки или палочки туберкулеза). Нестабильные L-формы обладают способностью принимать первоначальный вид (реверсия).

Капсула

При неблагоприятных условиях внешней среды бактерии образуют капсулу. Микрокапсула плотно прилегает к стенке. Ее можно увидеть только в электронном микроскопе. Макрокапсулу часто образуют патогенные микробы (пневмококки). У клебсиеллы пневмонии макрокапсула обнаруживаются всегда.

Капсулоподобная оболочка

Капсулоподобная оболочка представляет собой образование, непрочно связанное с клеточной стенкой. Благодаря бактериальным ферментам капсулоподобная оболочка покрывается углеводами (экзополисахаридами) внешней среды, благодаря чему обеспечивается слипание бактерий с разными поверхностями, даже совершенно гладкими. Например, стрептококки, попадая в организм человека, способны слипаться с зубами и сердечными клапанами.

Функции капсулы многообразны:

  • защита от агрессивных условий внешней среды,
  • обеспечение адгезии (слипанию) с клетками человека,
  • обладая антигенными свойствами, капсула оказывает токсический эффект при внедрении в живой организм.

Жгутики

  • У некоторых бактериальных клеток имеются жгутики (один или несколько) или ворсинки, которые помогают передвигаться. В составе жгутиков находится сократительный белок флагелин.
  • Количество жгутиков может быть разным – один, пучок жгутиков, жгутики на разных концах клетки или по всей поверхности.
  • Движение (беспорядочное или вращательное) осуществляется в результате вращательного движения жгутиков.
  • Антигенные свойства жгутиков оказывают токсический эффект при заболевании.
  • Бактерии, не имеющие жгутиков, покрываясь слизью, способны скользить. У водных бактерий содержатся вакуоли в количестве 40 – 60, наполненные азотом.

Они обеспечивают погружение и всплытие. В почве бактериальная клетка передвигается по почвенным каналам.

Пили

  • Пили (ворсинки, фимбрии) покрывают поверхность бактериальных клеток. Ворсинка представляет собой винтообразно скрученную тонкую полую нить белковой природы.
  • Пили общего типаобеспечивают адгезию (слипание) с клетками хозяина. Их количество огромно и составляет от нескольких сотен до нескольких тысяч. С момента прикрепления начинается любой инфекционный процесс.
  • Половые пилиспособствуют переносу генетического материала от донора реципиенту. Их количество от 1 до 4-х на одну клетку.

Цитоплазматическая мембрана

  • Цитоплазматическая мембрана располагается под клеточной стенкой и представляет собой липопротеин (до 30% липидов и до 70% протеинов).
  • У разных бактериальных клеток разный липидный состав мембран.
  • Мембранные белки выполняют множество функций. Функциональные белкипредставляют собой ферменты, благодаря которым на цитоплазматической мембране происходит синтез разных ее компонентов и др.
  • Цитоплазматическая мембрана состоит из 3-х слоев. Двойной фосфолипидный слой пронизан глобулинами, которые обеспечивают транспорт веществ в бактериальную клетку. При нарушении ее работы клетка погибает.
  • Цитоплазматическая мембрана принимает участие в спорообразовании.

Внутреннее строение бактерий

Цитоплазма

Все содержимое клетки, за исключением ядра и клеточной стенки, называется цитоплазмой. В жидкой, бесструктурной фазе цитоплазмы (матриксе) находятся рибосомы, мембранные системы, митохондрии, пластиды и другие структуры, а также запасные питательные вещества. Цитоплазма обладает чрезвычайно сложной, тонкой структурой (слоистая, гранулярная). С помощью электронного микроскопа раскрыты многие интересные детали строения клетки.

Внешний липопротвидный слой протопласта бактерий, обладающий особыми физическими и химическими свойствами, называется цитоплазматической мембраной. Внутри цитоплазмы находятся все жизненно важные структуры и органеллы. Цитоплазматическая мембрана выполняет очень важную роль – регулирует поступление веществ в клетку и выделение наружу продуктов обмена. Через мембрану питательные вещества могут поступать в клетку в результате к активного биохимического процесса с участием ферментов.

Кроме того, в мембране происходит синтез некоторых составных частей клетки, в основном компонентов клеточной стенки и капсулы. Наконец, в цитоплазматической мембране находятся важнейшие ферменты (биологические катализаторы). Упорядоченное расположение ферментов на мембранах позволяет регулировать их активность и предотвращать разрушение одних ферментов другими. С мембраной связаны рибосомы – структурные частицы, на которых синтезируется белок. Мембрана состоит из липопротеидов. Она достаточно прочна и может обеспечить временное существование клетки без оболочки. Цитоплазматическая мембрана составляет до 20% сухой массы клетки.

На электронных фотографиях тонких срезов бактерий цитоплазматическая мембрана представляется в виде непрерывного тяжа толщиной около 75A, состоящего из светлого слоя (липиды), заключенного между двумя более темными (белки). Каждый слой имеет ширину 20–30А. Такая мембрана называется элементарной.

Гранулы

В цитоплазме клеток бактерий часто содержатся гранулы различной формы и размеров. Однако их присутствие нельзя рассматривать как какой-то постоянный признак микроорганизма, обычно оно в значительной степени связано с физическими и химическими условиями среды.

Многие цитоплазматические включения состоят из соединений, которые служат источником энергии и углерода. Эти запасные вещества образуются, когда организм снабжается достаточным количеством питательных веществ, и, наоборот, используются, когда организм попадает в условия, менее благоприятные в отношении питания.

У многих бактерий гранулы состоят из крахмала или других полисахаридов – гликогена и гранулезы. У некоторых бактерий при выращивании на богатой сахарами среде внутри клетки встречаются капельки жира. Другим широко распространенным типом гранулярных включений является волютин (метахроматиновые гранулы). Эти гранулы состоят из полиметафосфата (запасное вещество, включающее остатки фосфорной кислоты). Полиметафосфат служит источником фосфатных групп и энергии для организма. Бактерии чаще накапливают волютин в необычных условиях питания, например на среде, не содержащей серы. В цитоплазме некоторых серных бактерий находятся капельки серы.

Мезосомы

Между плазматической мембраной и клеточной стенкой имеется связь в виде десмозов – мостиков. Цитоплазматическая мембрана часто дает инвагинации – впячивания внутрь клетки. Эти впячивания образуют в цитоплазме особые мембранные структуры, названные мезосомами.

Некоторые виды мезосом представляют собой тельца, отделенные от цитоплазмы собственной мембраной. Внутри таких мембранных мешочков упакованы многочисленные пузырьки и канальцы. Эти структуры выполняют у бактерий самые различные функции. Одни из этих структур – аналоги митохондрий.

Другие выполняют функции зндоплазматической сети или апарата Гольджи. Путем инвагинации цитоплазматической мембраны образуется также фотосинтезирующий аппарат бактерий. После впячивания цитоплазмы мембрана продолжает расти и образует стопки, которые по аналогии с гранулами хлоропластов растений называют стопками тилакоидов. В этих мембранах, часто заполняющих собой большую часть цитоплазмы бактериальной клетки, локализуются пигменты (бактериохлорофилл, каротиноиды) и ферменты (цитохромы), осуществляющие процесс фотосинтеза.

Нуклеоид

У бактерий нет такого ядра, как у высших организмов (эукариотов), а есть его аналог – «ядерный эквивалент» – нуклеоид, который является эволюционно более примитивной формой организации ядерного вещества.  Он состоит из одной замкнутой в кольцо двухспиральной нити ДНК длиной 1,1 –1,6 нм, которую рассматривают как одиночную бактериальную хромосому, или генофор. Нуклеоид у прокариот не отграничен от остальной части клетки мембраной – у него отсутствует ядерная оболочка.

В состав структур нуклеоида входят РНК-полимераза, основные белки и отсутствуют гистоны; хромосома закрепляется на цитоплазматической мембране, а у грамположительных бактерий – на мезосомс. Бактериальная хромосома реплицируется поликонсервативным способом: родительская двойная спираль ДНК раскручивается и на матрице каждой полинуклеотидной цепи собирается новая комплементарная цепочка. Нуклеоид не имеет митотического аппарата, и расхождение дочерних ядер обеспечивается ростом цитоплазматической мембраны.

Бактериальное ядро – дифференцированная структура. В зависимости от стадии развития клетки нуклеоид может быть дискретным (прерывистым) и состоять из отдельных фрагментов. Это связано с тем, что деление бактериальной клетки во времени осуществляется после завершения цикла репликации молекулы ДНК и оформления дочерних хромосом.

В нуклеоиде сосредоточен основной объем генетической информации бактериальной клетки. Кроме нуклеоида в клетках многих бактерий обнаружены внехромосомные генетические элементы – плазмиды, представленные небольшими кольцевыми молекулами ДНК, способными к автономной репликации.

Плазмиды

Плазмиды представляют собой автономные молекулы, свернутые в кольцо, двунитевой ДНК. Их масса значительно меньше массы нуклеотида. Несмотря на то, что в ДНК плазмид закодирована наследственная информация, они не являются жизненно важными и необходимыми для бактериальной клетки.

Рибосомы

В цитоплазме бактерий содержатся рибосомы – белок-синтезирующие частицы диаметром 200А. В клетке их насчитывается больше тысячи. Состоят рибосомы из РНК и белка. У бактерий многие рибосомы расположены в цитоплазме свободно, некоторые из них могут быть связаны с мембранами.

Рибосомы являются центрами синтеза белка в клетке. При этом они часто соединяются между собой, образуя агрегаты, называемые полирибосомами или полисомами.

Включения

Включения – продукты метаболизма ядерных и безъядерных клеток. Представляют собой запас питательных веществ: гликоген, крахмал, сера, полифосфат (валютин) и др. Включения часто при окраске приобретают иной вид, чем цвет красителя. По валютину можно диагностировать дифтерийную палочку.

Что же отсутствует в клетках бактерий?

Так как бактерия – это прокариотический микроорганизм, в клетках бактерий всегда отсутствуют множество органоидов, которые присущи эукариотическим организмам:

  • аппарат Гольджи, который помогает клетке тем, что накапливает ненужные вещества, а в последствии выводит их из клетки;
  • пластиды, содержащиеся только в клетках растений, обуславливают их окраску, а также играют значимую роль в фотосинтезе;
  • лизосомы, обладающие особыми ферментами и помогающие расщеплению белков;
  • митохондрии обеспечивают клетки необходимой энергией, а также участвуют в размножении;
  • эндоплазматическая сеть, обеспечивающая транспорт в цитоплазму определённых веществ;
  • клеточный центр.

Также стоит помнить, что у бактерий отсутствует клеточная стенка, посему процессы, такие как пиноцитоз и фагоцитоз не могут протекать.

Особенности процессов бактерий

Являясь особыми микроорганизмами, бактерии приспособлены к существованию в таких условиях, когда кислород может отсутствовать. А само же дыхание у них происходит за счёт мезосом. Также очень интересно то, что зелёные организмы способны точно также фотосинтезировать, как и растения. Но важно учитывать то, что у растений процесс фотозинтеза происходит в хлоропластах, а у бактерий же на мембранах.

Размножение в бактериальной клетке происходит примитивнейшим путём. Созревшая клетка делится надвое, они через некоторое время достигают зрелости, и этот процесс повторяется. В благоприятных условиях за сутки может произойти смена 70-80 поколений. Важно помнить, что бактериям из-за своего строения не доступны такие способы размножения, как митоз и мейоз. Они присущи только эукариотическим клеткам.

Известно, что образование споров – это один из нескольких способов размножения грибов и растений. Но бактерии также умеют образовывать споры, что присуще немногим из их видов. Они обладают данной способностью для того, чтобы переживать особо неблагоприятные условия, которые могут быть опасными для их жизни.

Известны такие виды, которые способны выжить даже в условиях космоса. Такое не могут повторить никакие живые организмы. Бактерии стали прародителями жизни на Земле благодаря простоте их строения. Но то, что они существуют и по сей день, показывает насколько они важны для окружающего нас мира. С их помощью люди могут максимально приблизиться к ответу на вопрос о происхождении жизни на Земле, постоянно изучая, бактерии и узнавая что-то новое.

Самые интересные и увлекательные факты о бактериях

Бактерии стафилококка жаждут человеческой крови

Золотистый стафилококк (Staphylococcus aureus) является распространенным видом бактерий, который поражает около 30 процентов всех людей. У некоторых людей он является частью микробиома (микрофлоры), и встречается как внутри организма, так и на коже или в полости рта. В то время как есть безвредные штаммы стафилококка, другие, такие как метициллинрезистентный золотистый стафилококк (Methicillin-resistant Staphylococcus aureus), создают серьезные проблемы для здоровья, включая инфекции кожи, сердечно-сосудистые заболевания, менингит и болезни пищеварительной системы.

Исследователи Университета Вандербильта обнаружили, что бактерии стафилококка предпочитают кровь человека по сравнению с кровью животных. Эти бактерии неравнодушны к железу, которое содержится в гемоглобине, обнаруженном в эритроцитах. Золотистый стафилококк разрывает клетки крови, чтобы добраться до железа внутри них. Считается, что генетические вариации гемоглобина могут сделать одних людей более желанным для бактерий стафилококка, чем других.

Бактерии вызывают дождь

Исследователи обнаружили, что бактерии в атмосфере могут играть определенную роль в производстве дождя и других форм осадков. Этот процесс начинается, когда бактерии с растений переносятся ветром в атмосферу. На высоте, вокруг них образуется лед, и они начинают расти. Как только замороженные бактерии достигают определенного порога роста, лед начинает таять и возвращается на землю в виде дождя. Бактерии вида Psuedomonas syringae даже были обнаружены в центре крупных частиц града. Они продуцируют особый белок в клеточных мембранах, позволяющий связывать воду уникальным образом, способствуя образованию льда.

Борьба с бактериями, провоцирующими акне

Исследователи выявили, что некоторые штаммы бактерий, вызывающих акне могут фактически помочь предотвратить прыщи. Бактерия, которая вызывает акне – Propionibacterium acnes, обитает в порах нашей кожи. Когда эти бактерии провоцируют иммунный ответ, область на коже набухает, и образуются прыщи.

Однако было обнаружено, что некоторые штаммы бактерий реже вызывают акне. Эти штаммы могут быть причиной того, что у людей со здоровой кожей редко появляются прыщи. Изучая гены штаммов Propionibacterium acnes, собранные у людей с акне и здоровой кожей, исследователи определили штаммп, который был распространен на чистой коже и редко встречался на коже с акне. Будущие исследования будут включать в себя попытки разработать препарат, убивающий только вызывающие угри штаммы бактерии Propionibacterium acnes.

Бактерии на деснах могут привести к сердечно-сосудистым заболеванием

Кто бы мог подумать, что регулярная чистка зубов способна помочь предотвратить заболевания сердца? Ранее исследования выявили связь между болезнью десен и сердечно-сосудистыми заболеваниями. Теперь ученые нашли конкретную связь между этими заболеваниями.

Предполагается, что и бактерии, и люди производят определенные типы белков, называемые стрессовыми белками. Эти белки образуются, когда клетки испытывают различные типы стрессовых состояний. Когда у человека есть инфекция десен, клетки иммунной системы начинают атаковать бактерии. Бактерии производят стресс-белки при атаке, а белые кровяные клетки также атакуют стресс-белки.

Проблема заключается в том, что белые кровяные клетки не могут различать стресс-белки, продуцируемые бактериями, и те, которые продуцируются организмом. В результате клетки иммунной системы также атакуют стрессовые белки, вырабатываемые организмом, что вызывает накопление лейкоцитов в артериях и приводит к атеросклерозу. Кальцинированное сердце является основной причиной сердечно-сосудистых заболеваний.

Почвенные бактерии улучшают обучаемость

Вы знали, что время, проведенное в саду или работа в огороде, может помочь вам лучше учиться? По мнению исследователей, почвенная бактерия Mycobacterium vaccae способна улучшать обучаемость у млекопитающих.

Вероятно, эти бактерии попадают в наш организм путем проглатывания или через дыхание. По предположению ученых, бактерия Mycobacterium vaccae улучшает обучаемость, стимулируя рост нейронов головного мозга, что приводит к увеличению уровня серотонина и снижению беспокойства.

Исследование проводили с использованием мышей, которых кормили живыми бактериями Mycobacterium vaccae. Результаты показали, что мыши, употребляющие бактерии, передвигались лабиринтом гораздо быстрее и с меньшим уровнем беспокойства, чем мыши, которые не питались бактериями. Ученые предполагает, что Mycobacterium vaccae играет определенную роль в улучшении решения новых задач и уменьшении уровня стресса.

Бактериальные силовые машины

Исследователи из Аргоннской национальной лаборатории обнаружили, что бактерия Bacillus subtilis обладают способностью вращать очень маленькие шестерни. Эти бактерии являются аэробными, то есть нуждаются в кислороде для роста и развития. Когда их помещают в раствор с микропузырьками воздуха, бактерии плавают в зубьях шестерни и заставляют ее поворачиваться в определенном направлении.

Требуется несколько сотен бактерий, работающих в унисон, чтобы начать вращение шестерни. Было также обнаружено, что бактерии могут поворачивать несколько соединенных между собой шестеренок. Исследователи смогли контролировать скорость, с которой бактерии крутили шестерни, регулируя количество кислорода в растворе. Уменьшение количества кислорода привело к замедлению бактерий. Удаление кислорода заставляет их полностью прекратить движение.

Видео



Источники